Regulation of mouse stomach development and Barx1 expression by specific microRNAs.

نویسندگان

  • Byeong-Moo Kim
  • Janghee Woo
  • Chryssa Kanellopoulou
  • Ramesh A Shivdasani
چکیده

Although microRNAs (miRNAs) are postulated to fine-tune many developmental processes, their relationships with specific targets and tissues remain largely undefined. The mesenchymal transcription factor Barx1 controls spleen and stomach morphogenesis and is required to specify stomach-specific epithelium in adjacent endoderm. Barx1 expression is precisely regulated in space and time, with a sharp drop in stomach levels after epithelial specification. We tested the hypothesis that specific miRNAs mediate this marked decline in Barx1 levels. Depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchyme and conditional Dicer gene deletion in mice significantly increased Barx1 levels, disrupted stomach and intestine development and caused spleen agenesis. Computational and experimental studies identified miR-7a and miR-203 as candidate miRNAs that regulate Barx1 and are expressed in inverse proportion to it in the fetal mouse stomach. Through specific interactions with cognate sequences in the Barx1 3' untranslated region, miR-7a and miR-203 repress Barx1 expression in stomach mesenchymal cells and its function in inducing gastric epithelium. These results indicate that miRNAs are required for proper digestive tract organogenesis and that miR-7a and miR-203 control expression of the stomach homeotic regulator Barx1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling.

Inductive interactions between gut endoderm and the underlying mesenchyme pattern the developing digestive tract into regions with specific morphology and functions. The molecular mechanisms behind these interactions are largely unknown. Expression of the conserved homeobox gene Barx1 is restricted to the stomach mesenchyme during gut organogenesis. Using recombinant tissue cultures, we show th...

متن کامل

Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen.

Homeobox genes convey positional information in embryos and their role in patterning the mammalian gut is a topic of considerable interest. Barx1 is expressed selectively in fetal stomach mesenchyme and directs differentiation of overlying endoderm. Recombinant tissue cultures and study of young mouse embryos previously suggested that Barx1 controls expression of secreted Wnt antagonists, which...

متن کامل

Barx1-Mediated Inhibition of Wnt Signaling in the Mouse Thoracic Foregut Controls Tracheo-Esophageal Septation and Epithelial Differentiation

Mesenchymal cells underlying the definitive endoderm in vertebrate animals play a vital role in digestive and respiratory organogenesis. Although several signaling pathways are implicated in foregut patterning and morphogenesis, and despite the clinical importance of congenital tracheal and esophageal malformations in humans, understanding of molecular mechanisms that allow a single tube to sep...

متن کامل

Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach

In the process of cloning murine proteins capable of binding to a regulatory module of the Ncam promoter, we isolated a novel homeobox gene, Barx1, the first vertebrate member of the structural subclass defined by Drosophila BarH1. Here we report its sequence, chromosomal localisation and embryonic expression pattern. Barx1 was strongly expressed in restricted areas of head and neck mesenchyme ...

متن کامل

Simultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell

Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 2011